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a b s t r a c t

In this work, we use a multifluid model to investigate numerically the dynamics of segregating fluidized
bidisperse mixtures. The model uses the default multifluid equations of commercial computational fluid
dynamics (CFD) codes, except for the fluid–particle drag force closure, which Mazzei and Lettieri [1]
recently developed and extended to polydisperse systems. The study also comprises some preliminary
simulations of collapsing monodisperse beds, focusing on the role of the plastic solid stress. This work
tests whether the model is able to correctly predict not only the axial segregation profiles through the bed,
but also the minimum fluid velocities at which a) the mixture, being no longer fixed, starts segregating
and transient fluidization takes place, and b) the mixture becomes steadily fluidized and fully mixed. To
FD validate the model predictions, we use the experimental findings of Marzocchella et al. [2]. The plastic
stress results to play an important role, rendering the simulations more stable and allowing for larger
time steps. The model well predicts the stationary axial segregation profiles, and for short computational
times estimates correctly the onset of transient fluidization; for longer computational times, however,
the system evolves towards a new steady state where, even if the powder is at maximum packing, it
partly segregates. The model overestimates the velocity required to fully mix the suspension, probably

bblin
because the simulated bu

. Introduction

Many industrial processes taking place in fluidized beds involve
olydisperse suspensions of particles that differ in size and/or
ensity; we mention, for instance, catalytic polymerization and
racking, crystallization, sedimentation and classification. When
uidized, these suspensions tend to segregate, because over a broad
ange of superficial velocities, some particles are only partly sup-
orted by the fluid and migrate towards the bottom of the bed.
hether or not segregation is beneficial depends on the applica-

ion at hand; in classifiers for example is key, whereas in processes
hat require intimate particle mixing is detrimental. In either case,
o properly design and run fluidized beds, engineers need to predict
he dynamics of polydisperse mixtures and anticipate how these
espond to changes in operating conditions.

Researchers have extensively investigated how dissimilar flu-

dized particles mix and segregate. Rowe and Nienow [3] reported
hat in gas-fluidized suspensions the passage of bubbles is the chief

echanism responsible for mixing and segregation. The wakes of
he bubbles generated near the gas distributor plate entrain neigh-
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g is not as vigorous as it is experimentally.
© 2009 Elsevier B.V. All rights reserved.

boring particles and drag them upwards through the bed; along
the way, the wakes exchange their content with the surround-
ing dense bed (wake shedding). These phenomena promote axial
mixing, allowing the particles to migrate towards the surface of
the bed. At the same time, as the bubbles ascend, particles from
above fall through and around them; furthermore, the smaller and
denser particles percolate through the interstices created among
the bigger and lighter ones by the bubble motion. These phenomena
counter those previously described, promoting axial segregation.
Mixing and segregation occur therefore concurrently, and their
dynamic equilibrium yields axial profiles of particle concentrations.
The particles that tend to accumulate near the bed surface are usu-
ally referred to as flotsam, whereas those that tend to sink down as
jetsam.

The experimental studies that appear in the extensive litera-
ture on polydisperse fluidized mixtures tried to characterize these
systems from different angles. Some proposed to determine the
minimum fluid velocity necessary to fully fluidized them [4–7],
whereas others concentrated on their dynamics [2,8–11]. Even

if these investigations have helped us to understand better how
multicomponent suspensions behave, the mechanisms underlying
mixing and segregation still remain unclear. Gibilaro and Rowe [12]
tried to characterize them, developing a mechanistic model that
could predict the stationary axial profiles of jetsam concentration

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:l.mazzei@ucl.ac.uk
dx.doi.org/10.1016/j.cej.2009.11.003
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Nomenclature

CD particle drag force coefficient
C∗
D particle drag force coefficient

De rate of deformation tensor of fluid (1/s)
Di rate of deformation tensor of i th particle phase (1/s)
di particle diameter in i th particle phase (m)
dik constitutive function (m)
eik coefficient of restitution for collisions between par-

ticles of i th and k th phases
fi force exerted by fluid on i th particle phase (per unit

particle) (kg m/s2)
fdi drag force exerted by fluid on i th particle phase (per

unit particle) (kg m/s2)
fsi buoyancy force exerted by fluid on i th particle phase

(per unit particle) (kg m/s2)
fik force exerted by k th particle phase on i th particle

phase (per unit particle) (kg m/s2)
Fik friction coefficient
g gravitational acceleration (m/s2)
gi radial distribution function in i th particle phase
gik constitutive function
Gd
i

pseudointernal energy source term in i th particle
phase (kg/m s3)

I identity tensor
n Richardson & Zaki exponent
ni number density of i th particle phase (1/m3)
p∗ dimensional constant (kg/m s2)
pe pressure of fluid (kg/m s2)
pi pressure of i th particle phase (kg/m s2)
pp
i

plastic pressure of i th particle phase (kg/m s2)
pv
i

viscous pressure of i th particle phase (kg/m s2)
qi pseudothermal heat flux in i th particle phase

(kg/s3)
Rei particle Reynolds number for i th particle phase
Re∗
i

particle Reynolds number for i th particle phase
Se effective stress tensor of fluid (kg/m s2)
Si effective stress tensor of i th particle phase (kg/m s2)
Sc
i

pseudointernal energy sink term in i th particle
phase (kg/m s3)

Sv
i

pseudointernal energy sink term in i th particle
phase (kg/m s3)

t time (s)
u superficial fluid velocity magnitude (m/s)
u1 minimum superficial velocity at which particle mix-

ture fully fluidizes (m/s)
u2 minimum superficial velocity at which transient flu-

idization begins (m/s)
ue velocity of fluid (m/s)
ui velocity of i th particle phase (m/s)
Ui pseudointernal energy of i th particle phase (m2/s2)
x axial coordinate (m)

Greek symbols
ˇi drag force (between fluid and i th particle phase)

coefficient (kg/m3 s)
ε volume fraction of fluid
εmin volume fraction of fluid at maximum packing
�e dilatational viscosity of fluid (kg/m s)
�i dilatational viscosity of i th particle phase (kg/m s)
�v
i

dilatational viscosity of i th particle phase in viscous
regime (kg/m s)

�e shear viscosity of fluid (kg/m s)
�i shear viscosity of i th particle phase (kg/m s)

�p
i

shear viscosity of i th particle phase in plastic regime
(kg/m s)

�v
i

shear viscosity of i th particle phase in viscous
regime (kg/m s)

�i granular temperature of i th particle phase (m2/s2)
�e mass density of fluid (kg/m3)
�i mass density of i th particle phase (kg/m3)
�f frictional solid packing
�i volume fraction of i th particle phase
�max maximum solid packing
�im volume fraction of i th particle phase at maximum

solid packing
ϕ constitutive function
ωi mass fraction i th particle phase on fluid-free basis

ik constitutive function
 constitutive function

�ik drag force (between i th and k th particle phases)

coefficient (kg/m3 s)

in bidisperse fluidized beds. Since then, several researchers have
made similar attempts, improving on Gibilaro and Rowe’s model or
advancing alternative approaches [13–16]. Their equations repro-
duce reasonably well the main qualitative features of powder
segregation, although there are some exceptions [10], but they are
quantitatively inaccurate and rely on (perhaps too) many empirical
parameters.

The increased power of desktop computers permits today to
simulate the dynamics of multicomponent mixtures by integrat-
ing numerically their equations of motion. Being based on first
principles (conservation of mass, momentum and energy), these
equations should describe quite accurately the dynamics of gran-
ular media. In reality, nevertheless, this is more a promise than
a fact. Two modeling approaches are available: the Eulerian mul-
tifluid, where averaged equations describe the motion of both
fluid and particles, regarded as interpenetrating continua, and the
Eulerian–Lagrangian, which tracks each particle and solves aver-
aged equations of motion only for the continuous phase. Although
the first approach is convenient because it is relatively inexpen-
sive numerically and provides directly the information that usually
interests us (e.g., mean pressure drops, average velocity fields, void
fraction profiles), the other is also frequently used, especially by
academics, insomuch as it offers considerable insight, at a more
fundamental level, into the dynamics of granular media [17–20].

Multifluid models originate from the work of [21], who were
the first to derive averaged equations of motion for monodis-
perse fluidized suspensions. Adopting various averaging schemes,
researchers have formulated many variants to the original equa-
tions, extending them also to polydisperse mixtures [22]. These
equations share one feature: they comprise indeterminate terms
not directly related to the averaged variables but still associated
with details of the motion at a length scale much smaller than
the mean particle size. These terms are represented by the fluid
and solid effective stress tensors and by the interaction forces
exchanged by the phases. Thus, a closure problem arises, which
usually cannot be solved analytically and needs to be overcome by
means of semiempirical expressions. This is the main shortcoming
of the method, for finding good closures is exceedingly difficult, but
inaccurate closures lead to poor model predictions.
For the fluid–particle interaction force there are many expres-
sions derived from empirical pressure drop or equilibrium bed
expansion profiles in homogeneous suspensions [22]. Modeling
particle interactions is much more difficult; to do it, researchers
often resort to the kinetic theory of dense granular flows. Initially
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Table 1
Material properties.

Property Units Silica Sand
(Flotsam)

Glass Beads
(Jetsam)

Sauter mean diameter �m 125 500
Size �m 100–150 400–600
Sphericity – ≈ 1 1
Density kg/m3 2600 2540

tum (dynamical equations). These do not form a closed system, and
require closure relationships.

Table 2 reports the averaged equations of motion [22,33]. i
is a phase index, with 1 and 2 identifying jetsam and flotsam,

Table 2
Multifluid locally averaged equations of motion for a system of two particle classes.

Continuity Equation—Fluid Phase
∂ε

∂t
+ ∇ · (εue) = 0

Continuity Equation—Solid Phase i
∂�i
∂t

+ ∇ · (�iui) = 0
34 L. Mazzei et al. / Chemical Engi

eveloped for monodisperse mixtures to close the effective solid
tress tensor [23–25], these kinetic equations have then been
xtended to multicomponent systems to express not only the stress
ut also the particle interactions between the granular phases
26–29]. The averaged equations of motion, coupled with these
onstitutive expressions, have permitted to simulate the dynamics
f polydisperse granular media. Nonetheless, albeit these models
escribe correctly their qualitative features, predicting for instance
xial segregation [30], layer inversion [31] and the entrainment of
articles in the bubble wakes [32], they still fail to predict impor-
ant basic fluidization parameters, such as the minimum superficial
uid velocity at which a bidisperse mixture starts segregating or
ecomes fully mixed and steadily fluidized.

. Fluidized bidisperse mixture dynamics. Experimental
vidence

As we mentioned, many researchers have investigated exper-
mentally the dynamics of polydisperse fluidized mixtures. For a
horough analysis, very clearly presented, we refer to the work of
2] and [10], whose results we now only in part briefly summarize.

Let us consider a bidisperse powder of particles with equal
ensity and different diameter. Initially the powder is perfectly
ixed, with a jetsam volume fraction on a fluid-free basis (that

s, not accounting for the interparticle voidage) equal to ω1. For
ow superficial fluid velocities, the powder remains fixed and the
ressure drop�p(u) through it increases linearly. When u reaches
he value u1(ω1),�p equals the weight of the bed per unit cross-
ectional area: it seems therefore that the powder has become
uidized. For higher superficial fluid velocities, nevertheless,�p(u)
oes not remain constant, as we would expect, but oscillates giving
ise to a sawlike pattern, a behavior that reveals transient flu-
dization. The powder is no longer fully supported by the fluid,
ut the jetsam segregates forming a defluidized layer of particles
hat partly rests on the distributor plate, lowering the pressure
rop. Hence, the bed splits up in two regions: one fully fluidized
nd one defluidized. When u reaches the value u2(ω1),�p equals
nce again the weight of the bed per unit cross-sectional area, and
emains constant at higher superficial fluid velocities. Thus, u2(ω1)
epresents the minimum velocity necessary to fully and steadily
uidize all the particle mixture, whereas u1(ω1) represents the
inimum velocity at which the bed is no longer fixed, the par-

icles start moving, transient fluidization takes place and �p(u)
egins oscillating. These velocities depend onω1, but are not related
o the minimum fluidization velocities of flotsam and jetsam; in
act, u1(ω1) might be lower than the former, whereas u2(ω1) is
lways lower than the latter. Note that when u exceeds u1(ω1),
he bed starts bubbling, allowing the jetsam to segregate. In the
ange [u1(ω1), u2(ω1)], the fluid does not support the jetsam, which
inks down forming a partially defluidized layer; we emphasize
he word partially, because experimental evidence shows that the
ayer is near incipient fluidization, being supported almost entirely
y the fluid. When u exceeds u2(ω1), all the particles float freely,
ixing is vigorous and overtakes segregation, and the mixture is

erfectly mixed. No segregation, therefore, occurs forugreater than
2(ω1).

. Goals of this work

This work tests a basic multifluid model implemented within
he commercial computational fluid dynamics (CFD) code Fluent,

erifying whether it yields the correct segregation profiles and flu-
dization parameters for bidisperse mixtures of particles differing
nly in size. In light of the experimental findings described in the
revious section, we aim to answer, among others, the following
uestions:
Geldart group – B B
Terminal velocity m/s 0.80 4.10
Minimum fluidization velocity m/s 0.017 0.220

(1) For a given powder, initially perfectly mixed and with a jetsam
concentration on a fluid-free basis equal to ω̄1, is the model able
to correctly predict u1(ω̄1) and u2(ω̄1)? In particular, is u2(ω̄1)
less than the jetsam minimum fluidization velocity?

(2) For u in the range [u1(ω̄1), u2(ω̄1)], does the bed separate in
two layers, one fluidized and one defluidized but near incipient
fluidization?

(3) Are the axial profiles of jetsam volume fraction correctly pre-
dicted in the two layers? Is each layer well mixed, or doesω1(x)
change gradually along the axial coordinate x?

Some researchers have simulated bidisperse fluidized suspen-
sions, aiming to predict their axial segregation profiles (see, for
instance [30]). These studies, however, do not attempt to predict
the threshold velocities u1(ω̄1) and u2(ω̄1). We believe that this is
an important test for a multiphase fluid dynamic model. If a model
is accurate, it must be able to describe the phenomenology pre-
sented above, and predict correctly the values of these two simple,
but crucial, fluidization parameters.

4. Materials

To answer the questions raised in Section 3 and validate the
model, we must compare numerical predictions with experimental
data. To this end, we did not run experiments ourselves, but used
the results of [2]. Table 1 shows the material properties. The bed
consists of a binary mixture containing equal masses (ω̄1 = 0.50)
of 125 �m silica sand particles (flotsam) and 500 �m glass beads
(jetsam). The ratio between their minimum fluidization velocities
is about 13.

5. Multiphase fluid dynamic model

We employ a multifluid modeling approach. The averaged equa-
tions of motion are six, two for each phase, and express the principle
of conservation of mass (continuity equations) and linear momen-
Dynamical Equation—Fluid Phase

�e

[
∂

∂t
(εue) + ∇ · (εueue)

]
= ∇ · Se − n1f1 − n2f2 + ε�eg

Dynamical Equation—Solid Phase i

�i

[
∂

∂t
(�iui) + ∇ · (�iuiui)

]
= ∇ · Si + nifi + nifik + �i�ig
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espectively. �e and �i are the densities of the fluid and of the
articles, respectively; ε and �i are their volume fractions; ni is
he number density of solid phase i, and g is the gravitational
cceleration. Furthermore, ue,ui, Se, Si, fi and fik are the averaged
elocities, effective stress tensors and interaction forces per unit
article exerted by the fluid and by the k th solid phase on the i th
olid phase, respectively.

.1. Fluid–particle interaction forces

The fluid–particle interaction force consists of buoyancy and
rag forces. Some other contributions should be considered, for

nstance, the virtual mass, lift and Faxen forces, and a history-
ependent term analogous to the Basset force for the motion
f isolated particles [34]. These additional contributions are
eglected; we thoroughly discussed the reasons in [35] and do not
epeat them here. Thus, we write fi = fsi + fdi , defining the buoy-
ncy force as ni f

s
i ≡ −�i∇pe and closing the drag force using the

xpression of [1]:

i f
d
i ≡ ˇi(ue − ui) ; ˇi=

3
4
CD(Rei)

�e‖ue − ui‖ε�i
di

ε− (ε,Rei)

(5.1)

here it is:

 (ε, Rei) ≡ − lnϕ(ε, Rei)
ln ε

; ϕ(ε, Rei) ≡ C∗
D(ε, Rei)
CD(Rei)

ε2(1−n)

CD(Rei) =
(

0.63 + 4.8Re−1/2
i

)2
; C ∗

D(Re∗
i
) =
(

0.63+ 4.8Re∗ −1/2
i

)2

Rei ≡
�e
�e
ε‖ue − ui‖di ; Re∗i (ε, Rei) ≡ Rei

εn
;

n(Re∗
i
) = 4.8 + 2.4 · 0.175Re∗3/4

i

1 + 0.175Re∗3/4
i

(5.2)

ere di is the particle diameter of the i th solid phase,Rei andRe∗
i

are
article Reynolds numbers, CD and C ∗

D are drag coefficients evalu-
ted with the relation of [36] and n is the [37] coefficient evaluated
ith the equation of [38].

.2. Particle–particle interaction forces

We assume that the interaction force fik exchanged between
articles of different phases includes only a drag-like contri-
ution, being thus proportional to the slip velocity between
he phases. To close it, we adopt the constitutive equation of
27]:

nifik ≡ �ik(uk − ui) ;

�ik = 3
4

(1 + eik)
(

1 + �

4
Fik

)
�i�k�i�kgik(di + dk)2

�id
3
i

+ �kd3
k

‖uk − ui‖
(5.3)

here eik is a coefficient of restitution equal to 0.90, Fik is a coeffi-
ient of friction equal to 0.15 and gik represents a radial distribution
unction that we obtain by combining the radial distribution func-
ions gi and gk of the i th and k th particle phases, respectively. Their
xpressions are:

i =
di

2∑�k +
[

1 −
(
�
)1/3

]−1

; gik = digk + dkgi (5.4)

2
k=1

dk �max di + dk

ere � is the overall solid volume fraction, and �max is the maxi-
um solid compaction, i.e., the maximum value that � can attain.

he latter is a function of the powder composition, which we deter-
g Journal 156 (2010) 432–445 435

mine by using the empirical expression of [39]:

�max = �im + (1 − 
ik)
[
�im + (1 − �im)�km

]
(1 −ωi)

for ωi ≥
�im

�im + (1 − �im)�km
(5.5)

or otherwise:

�max = �km +
[
(�im − �km) + (1 − 
ik)(1 − �im)�km

]
[
�im + (1 − �im)�km

] ωi
�im

(5.6)

In the relations above, �im and �km are the particle volume fractions
at maximum packing for the phases i and k, respectively; also, it is:

ωi =
�i
�

; 
ik ≡
(
dk
di

)1/2

with di ≥ dk (5.7)

The relations above hold for di greater than dk; as a consequence,
phases i and k must represent jetsam and flotsam, respectively.
Note that, whereas Eq. (5.4) holds for any polydisperse mixtures (if
we replace the summation limit with n), Fedors and Landel’s model
applies only to bidisperse mixtures.

5.3. Effective stress

We close the effective stress tensors using customary Newto-
nian constitutive equations [40]; accordingly, we write:

Se = −peI + 2�eDe +
(
�e − 2

3
�e

)
trDeI ;

Si = −piI + 2�iDi +
(
�i −

2
3
�i

)
trDiI (5.8)

where pe, pi,�e,�i, �e and �i are the averaged pressures, shear vis-
cosities and dilatational viscosities of the fluid and particle phases,
respectively; moreover, I is the identity tensor, while De and Di are
the rate of deformation (or strain) tensors, which are defined as:

De ≡ 1
2

(∇ue + ∇uTe
)

; Di ≡
1
2

(∇ui + ∇uTi
)

(5.9)

Closing Se and Si therefore reduces to finding constitutive expres-
sions for the pressure, shear viscosity and dilatational viscosity of
each phase. We regard the fluid as incompressible, and do not spec-
ify its pressure constitutively; furthermore, we assume that �e is
constant, and neglect �e. For the solid phases, conversely, we adopt
more elaborate closures.

Two parameters characterize a polydisperse powder: the max-
imum solid packing �max and the frictional solid packing �f . The
first is a geometrical property of the particles and, as previously
said, indicates the maximum volume fraction that the solid can
reach; the second marks the transition from the viscous to the
plastic flow regime. In the first regime, the particles undergo tran-
sient contacts, momentum transfer is translational and collisional,
and the granular kinetic theory holds; in the second, the particles
undergo enduring contacts, momentum transfer is mainly frictional
and other models, empirical, phenomenological or based on soil
mechanics theory, apply.

In both regimes, each granular phase is usually modeled as a
Newtonian continuum, characterized in the viscous flow regime
by a viscous solid pressure pv

i
, a viscous shear viscosity �v

i
and a

v
viscous dilatational viscosity �
i
, and in the plastic flow regime by

a plastic solid pressure pp
i
, a plastic shear viscosity�p

i
and a plastic

dilatational viscosity �p
i
. In the viscous regime, the generic property

fi coincides with f v
i

, whereas in the plastic regime it is assumed to
be equal to f v

i
+ f p

i
.
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In this work, we express pv
i

using the closure of [41], suitably
xtended to cater for polydisperse suspensions [25]:

v
i =
[

1 + 2
2∑
k=1

(
dik
di

)3

(1 + eik)�kgik

]
�i�i�i

where dik ≡ di + dk
2

(5.10)

ere �i is the granular temperature of the i th phase, related to
he kinetic energy of the fluctuating particle motion. For k = i, eii
oincides with the restitution coefficient ei, whereas, from Eq. (5.4),
ii reduces togi. For the viscous shear viscosity, we adopt the closure
f [25]:

v
i = 10�idi

√
��i

96(1 + ei)gi

[
1 + 4

5
(1 + ei)�igi

]2

+4
5
�2
i �idigi(1 + ei)

(
�i
�

)1/2

(5.11)

nd for the viscous dilatational viscosity that of [41]:

v
i = 4

3
�2
i �idigi(1 + ei)

(
�i
�

)1/2

(5.12)

hese expressions are those originally developed for monodisperse
uspensions and do not directly account for the presence of the
ther granular phases.

The granular temperatures are governed by balance equations
or pseudointernal energies related to the particle velocity fluctua-
ions [25,42]. For fluidized mixtures these equations differ from the
lassical internal energy balance equation because of a sink term
c
i

representing losses of pseudointernal energy caused by inelastic
ollisions, a source term Gd

i
representing the generation of particle

elocity fluctuations by fluctuating fluid–particle forces, and a sink
erm Sv

i
representing their dampening by the viscous resistance to

article motion. Accordingly, each balance equation reads:

i

[
∂

∂t
(�iUi) +∇ · (�iUiui)

]
=−∇ · qi+Si : ∇ui + Gdi − Sv

i − Sci
(5.13)

here Ui ≡ 3�i/2 is the pseudointernal energy per particle unit
ass and qi is the pseudothermal heat flux. The closure problem

hen requires finding constitutive expressions also for qi, S
v
i
, Sc
i

and
d
i
. We do not report them here for briefness, but refer to [25].
The plastic granular stress is often modeled with arbitrary

unctions, which have no theoretical basis but correctly describe
ualitatively how dense granular media behave [42]. The prime
eature that must be captured is that such materials cannot reach
ompactions that are unphysically high. A closure for the plastic
olid pressure that many modelers employ takes the form:
p
i

= �ip∗ where p∗ ≡ 10A(� − �f )B (5.14)

here the coefficients A and B are very high, with typical values of
5 and 10, respectively. This equation is extremely sensitive to the
eviation of� from�f and this may lead to big pressure fluctuations
nd violent numerical instabilities that could crash the simulation
43,44]. For this reason, we decided not to use it.

Eq. (5.14) is often employed with radial distribution functions
hat are bounded and do not diverge positively when � approaches
max. For instance, the model of [42], implemented in the numerical

ode MFIX, adopts the following expression:

i =
1
ε

(
1 + 3di

2ε

2∑
k=1

�k
dk

)
(5.15)
g Journal 156 (2010) 432–445

in which, as opposed to Eq. (5.4), �max does not feature. Since the
closure that we selected for gi does diverge when � approaches
�max, the viscous solid pressure already prevents the mixture from
overpacking, and therefore there is no need to replace Eq. (5.10)
with any arbitrary divergent function, qualitatively sound but the-
oretically unfounded.

These considerations induced us to adopt the so-called KTGF-
based model, a plastic model partly based on the kinetic theory of
granular flows. This accounts only for the plastic shear viscosity�p

i
,

neglecting the plastic solid pressure pp
i

and the plastic dilatational
viscosity �p

i
. When � exceeds �f , we keep on using the viscous clo-

sure for the solid pressure, Eq. (5.10), but we increase the shear
solid viscosity by adding to the viscous contribution, Eq. (5.11), a
frictional one, whose expression is [43]:

�p
i

= pi sinϑi
2
√
I2(Di)

= pv
i

sinϑi

2
√
I2(Di)

; I2(Di) ≡ 1
2

[
(trDi)

2 − trD2
i

]
(5.16)

whereϑ is the angle of internal friction of the i th granular material,
and I2(Di) is the second invariant of the rate of deformation ten-
sor Di. In the pseudointernal energy balance equation, the higher
viscosity generates a higher dissipation of mechanical energy into
pseudointernal energy, increasing the granular temperature and in
turn the viscous solid pressure; therefore, the plastic shear viscosity
indirectly affects the solid pressure, despite our setting pp

i
to zero.

As we shall see in Section (8), by slowing down the solid packing,
this mechanism increases numerical stability and allows us to use
bigger time steps compared with simulations where we neglect the
plastic stress entirely.

6. Boundary and initial conditions

The computational grid (uniform, with square cells of 5 mm
side) is two-dimensional; hence, front and back wall effects are
neglected. On the left and right walls, no-slip boundary conditions
apply. At the bottom of the bed, a uniform inlet fluid velocity u is
specified. The fluid is ambient air. At the domain upper boundary,
the pressure is set to 105 Pa. On all the boundaries, the solid mass
fluxes are set to zero.

In its initial state, the bed is fixed and made up of a perfectly
mixed powder with jetsam volume fraction on a fluid-free basis
equal to 0.50. The bed is 0.40 m high, whereas the vessel is 1.00 m
high. The voidage is everywhere set to 0.40; this is just a reference
value, and does not coincide with the minimum voidage εmin = 1 −
�max predicted by the model of [39]. Accordingly, depending on
how we operate the bed, the voidage might decrease.

7. Numerical schemes and techniques

To run the simulations, we employed the commercial CFD code
Fluent 6.3. The governing and constitutive equations were imple-
mented in the multifluid model of the package, which is based
on a Eulerian description of the flow. We used the pressure-based
solver, which is recommended for low-speed incompressible flows.
To convert scalar transport equations into algebraic equations
that can be solved numerically, the code adopts a finite-volume
discretization scheme. To ensure convergence, we discretized in
space through a first-order upwind scheme, where cell-face quan-
tities are determined by assuming that the cell-center values of
any field variable represent cell-averages that hold throughout

the entire cells; thus, face quantities are identical to cell quanti-
ties, and are set equal to the cell-center values in the upstream
cells (relative to the direction of the normal velocity). Tempo-
ral discretization is first order accurate and implicit. To couple
pressure and velocity, we adopted the SIMPLE (Simultaneous Solu-
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ig. 1. Solid volume fraction, granular temperature and granular pressure time pro
s neglected. The time step is equal to 10−4 s.

ion of Non-linearly Coupled Equations) algorithm of [45]; the
ode does not allow any other coupling algorithms for Eulerian
ultiphase calculations. At each time step, we used a maxi-
um of 200 iterations to compute the flow variables. Setting the

olerance to 10−5, we usually attained convergence within the
teration limit. The time step was set to 10−3 s (see Section (8)).
nder-relaxation factors of 0.20 were adopted for all the vari-
bles.

. Preliminary simulations. Plastic stress role and time step
election

Before studying segregating fluidized bidisperse powders, we
an some preliminary simulations involving monodisperse col-
apsing beds. Investigating these simple systems permits, in short
omputational times, to 1) test the numerical stability of the model
hen the suspension rapidly overpacks, like in fast segregating

eds, 2) understand better how the granular material behaves and
ow the fluid dynamic variables affect one another, e.g., plastic vis-
osity and granular temperature, 3) analyze the role played by the
lastic solid stress and 4) select the shortest time step that ensures

nvariance of the numerical results.
A uniform suspension, initially with a solid volume fraction

qual to 0.20, freely collapses in a stagnant fluid. Since we do not
uidize the powder, the suspension cannot preserve its expanded
tate and contracts, its solid volume fraction increasing until it
eaches the value �max. Investigating this systems is convenient,

or the dynamics are fast and results can be obtained rapidly;

oreover, the quickness with which � increases is likely to accent
umerical instabilities, if these are present. We ran six simula-
ions, three accounting for the plastic stress and three neglecting it,
sing time steps of 10−2,10−3 and 10−4 s. In each simulation, we
n the reference location of the bed during the bed collapse. The plastic solid stress

monitored the temporal evolution of the fluid dynamic variables
of interest in a reference location at the bottom of the bed, near
the distributor center, since this is the most critical region of the
bed and also the one which reaches stationary conditions first. We
considered only the jetsam material, because its particles collapse
faster. Since one solid phase is present, we replace the phase index
i with the index p, except for � that represents both jetsam and
overall solid volume fractions.

8.1. Simulations without plastic stress

In these simulations, we did not account for the plastic stress;
consequently, we closed the effective solid stress tensor using only
the granular kinetic theory model. From Eq. (5.10), we can express
the viscous solid pressure as pv

p(�,�p) = f (�)�p, where f (�) is a
monotonic increasing function of � whose rate of change rapidly
rises as � approaches �max.

Let us first describe the results that we obtained using a time
step of 10−4 s. Fig. 1 reports the time profiles of jetsam volume
fraction, granular temperature and granular pressure in the refer-
ence location of the bed; here the steady state is reached within
0.1 real time seconds, which correspond to 1000 simulation time
steps. Note that this is not the time that the whole system takes
to attain stationary conditions, the latter being about 1.5 real time
seconds. Three time intervals are significant, identified in the dia-
grams by the lines A,B and C; these refer to the real time instants
tA = 0.038 s,tB = 0.053 s and tC = 0.070 s, respectively. For t < tA,

since both � and�p increase, the granular pressure does the same;
note, nevertheless, that�p seems to affect more stronglypv

p(�,�p).
For tA ≤ t < tB,� increases whereas�p decreases; these two effects
balance themselves out, leaving the granular pressure roughly con-
stant. For tB ≤ t < tC,� and�p preserve their trends; initially, since
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ig. 2. Solid volume fraction, granular temperature and granular pressure time pro
s neglected. The time steps are equal to 10−4,10−3 and 10−2 s.

p changes much more slowly than�, the latter dictates the behav-
or of pv

p(�,�p), which rises up quickly; afterwards, the situation
everses and pv

p(�,�p) starts decreasing. For t ≥ tC, � no longer
hanges and pv

p(�,�p) perfectly mirrors the granular temperature;
n particular, the ratio f (�) = pv

p(�,�p)/�p is constant, as Fig. 1D
ndicates.

Even if we have used the granular kinetic theory model also
n the plastic regime, where it no longer applies, the results are
ualitatively correct. This is because the expression for the radial
istribution function herein adopted, Eq. (5.10), handles correctly
he transition from the compressible to the incompressible granu-
ar regimes. Let us now analyze how the time step influences the
imulation output. Fig. 2 reports the same profiles shown in Fig. 1
or the three different time steps used. As we can observe, time steps
f 10−3 and 10−4 s yield essentially the same results; a time step
f 10−2 s instead is too large and generates numerical instabilities.
hese appear after 0.06 real time seconds and lead to mass imbal-
nce: solid is lost from the reference cell, as if it were destroyed.
he solid volume fraction, instead of continuing to increase towards
max, abruptly drops down to unphysically low values; at the same

ime, the granular temperature overshoots reaching values sev-
ral orders of magnitude greater than the correct ones (10−1m2/s2

nstead of 10−5m2/s2). This would result in extremely high gran-
lar pressures if the solid mass were not lost; in spite of mass

mbalance, nevertheless, the pressure reaches unphysically high
alues anyway. For longer times, the solid volume fraction oscil-
ates periodically, going up when more solid reaches the reference

ell from higher regions of the bed and going down again when
he solid mass is once again lost; Fig. 2D shows this behavior. This
nalysis tells us that, if we neglect the plastic stress, the optimal
ime step is 10−3 s; with smaller time steps the results do not vary
ppreciably.
n the reference location of the bed during the bed collapse. The plastic solid stress

8.2. Simulations with plastic stress

Again, we first present the results obtained using a time step
of 10−4 s. Fig. 3 reports the time profiles of jetsam volume frac-
tion, granular temperature and granular pressure in the reference
location of the bed. In this case, four time intervals are significant,
identified in the diagrams by the lines A,B, C and D; these refer
to the real time instants tA = 0.038s,tB = 0.053s,tC = 0.061s and
tD = 0.080s, respectively. Between tA and tC the system behaves as
before. Initially, � and�p both increase, and the granular pressure
follows suit; then the pressure temporarily stabilizes, insomuch
as � and �p take opposite trends that balance themselves out;
successively, �p temporarily plateaus and the pressure rises up
again. When � reaches the frictional threshold �f , the solid vis-
cosity abruptly increases, because the plastic contribution is added
to the viscous one. This accelerates the dissipation of mechanical
energy into pseudointernal energy. As a consequence, the granu-
lar temperature and in turn the granular pressure suddenly rise
up; Fig. 3B and C show these abrupt variations, reflected by spikes
in the time profiles immediately after tC . Between tC and tD both
� and �p affect the granular pressure, and since their trends are
opposite, the pressure does not vary monotonically. After tD, since
� has reached its stationary value, pp(�,�p) perfectly mirrors�p,
and once again their ratio is constant, as Fig. 3D indicates.

If we compare the real time instants tA, tB and tD with the cor-
responding times reported in Section (8.1), we see that the first
two coincide, because for � < �f the simulations are identical.

Conversely, the time that � takes to reach stationary conditions
is longer when we account for the plastic stress (0.080 s instead
of 0.070 s). We expected this, because when the plastic stress is
added to the viscous one, the granular pressure increases and slows
down solid compaction. The difference between the two times is



L. Mazzei et al. / Chemical Engineering Journal 156 (2010) 432–445 439

Fig. 3. Solid volume fraction, granular temperature and granular pressure time profiles in the reference location of the bed during the bed collapse. The plastic solid stress
is accounted for. The time step is equal to 10−4 s.

Fig. 4. Solid volume fraction, granular temperature and granular pressure time profiles in the reference location of the bed during the bed collapse. The plastic solid stress
is accounted for. The time steps are equal to 10−4,10−3 and 10−2 s.
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9. CFD simulations of segregating fluidized bidisperse
mixtures

Initially the mixture is perfectly mixed with a jetsam volume
fraction on a fluid-free basis ω̄1 equal to 0.50. Marzocchella et
ig. 5. Solid volume fraction, granular temperature and granular pressure time pro
s in one case neglected and in one case accounted for. The time step is equal to 10−

erely 0.010 real time seconds, but as we shall presently see it has
mportant consequences.

Fig. 4 reports the same profiles shown in Fig. 3 for the three dif-
erent time steps used. The results that we obtain when employing
time step of 10−2 s differ from those yielded by the other two sim-
lations, which are instead very similar; in particular, the profiles
btained in the first case are much smoother than the others,
ecause the time step is too big to capture all the fluctuations. The
tationary values, nevertheless, are identical and are also reached
n roughly the same time (we refer here to real time, of course, and
ot computational time). Note that the simulation that employs
he biggest time step now does not crash; this is because the incre-

ents in volume fraction, once the frictional threshold is reached,
re reduced by the plastic stress and the ensuing higher granu-
ar pressure. This, as already pointed out, increases the numerical
tability, preventing mass imbalance.

.3. Comparison and conclusions

This analysis tells us that to obtain accurate results we should
se a time step of 10−3 s. Smaller time steps yield essentially the
ame results, whereas bigger can either make the simulation crash,
f we neglect the plastic stress, or lead to inaccurate predictions.
nly for cursory analyses, we should use a time step of 10−2 s, and

n this case accounting for the plastic stress is essential.
To complete this investigation, we now compare the results

btained with a time step of 10−3 s when considering and neglect-
ng the plastic stress. Fig. 5 reports the profiles of solid volume

raction, granular temperature and granular pressure for both sim-
lations. Fig. 5A highlights that the plastic stress slows down
ompaction when the suspension becomes dense. Fig. 5B indicates
hat when the system enters the plastic regime, the plastic viscos-
ty initially leads to higher granular temperatures, but eventually
n the reference location of the bed during the bed collapse. The plastic solid stress

�p drops down to roughly the same value. Fig. 5C shows that the
stationary value of �p is slightly higher when we account for the
plastic stress; being very small, this difference does not show in
Fig. 5B and we need a blow up to highlight it. When � becomes
stationary, pp(�,�p) perfectly mirrors�p; this appears in Fig. 5D,
where the stationary value of the solid pressure is slightly higher
when we account for the plastic stress, similarly to what we found
for�p.
Fig. 6. Time profiles of the average jetsam volume fractions on a fluid-free basis in
the six bed layers for a fluid velocity of 5.00 cm/s.
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Fig. 8. Bed height time profiles during bed collapses of mixtures initially fluidized
at fluid velocities of 5.00, 7.00 and 20.00 cm/s.
ig. 7. Stationary axial profiles of the average jetsam volume fractions on a fluid-fre
f 5.00 (A) and 7.00 (B) cm/s.

l. [2] experimentally showed that this system starts segregat-
ng at a superficial fluid velocity u1(ω̄1) = 2.00 cm/s and becomes
teadily fluidized and fully mixed at u2(ω̄1) = 9.00 cm/s. To deter-
ine numerically these parameters, we ran a set of simulations

t different superficial fluid velocities, finding for each velocity u
stationary profile of jetsam volume fractions (fluid-free basis)

long the upward vertical axis x of the bed. To get these profiles, we
ivided the bed in six horizontal layers of equal height and com-
uted the average values 〈ω1〉(xi) of jetsam volume fraction within
ach layer, assigning them to the heights xi of the layer upper
oundaries. Marzocchella et al. used the same procedure in their
xperiments, first making the fluidized bed collapse by cutting off
he fluid supply (bed freezing), then dividing the bed in six layers
nd finally determining the average jetsam concentrations by siev-
ng the powder collected in each layer. Computationally, freezing
he bed is not necessary, since we can easily determine the fluid-
ree jetsam volume fractions while the mixture is fluidized. To see
hether there is any difference, we computed the profiles in both

ases, for fluidized and frozen beds.
In each simulation, the system reaches pseudostationary con-

itions within ten seconds. Fig. 6 reports, as an example, the time
rofiles of the functions 〈ω1〉(xi, t) for a velocity u of 5.00 cm/s. As
e can see, after ten seconds the profiles become roughly periodic.

ince we observed similar trends also in all the other simulations,
e computed the steady-state values always by averaging between
A = 10 s and tB = 150 s, which is the last simulated instant; thus, it
s:

ω1〉(xi) ≡ 1
tB − tA

∫ tB

tA

〈ω1〉(xi, t)dt (9.1)

ig. 7 shows the average jetsam concentration profiles that we
btained before and after freezing the bed, for fluid velocities equal
o 5.00 and 7.00 cm/s (Fig. 7A and B, respectively). Because flu-
dized and frozen beds have different heights, to compare the
esults we normalized xi with respect to the overall bed height,
qual to x6. In the top two layers, i.e., for i = 5,6, 〈ω1〉(xi) does
ot vary significantly; in the three lower layers, i.e., for i = 2,3,4,

t slightly increases, with a maximum percent variation of 5.6%;
nally, in the bottom layer it slightly decreases, with a maximum
ercent variation of 8.6%.

To explain these variations, we must consider the collapsing bed
ynamics. In the experiments, the bed freezing is almost instanta-

eous, especially if the fluid trapped in the bed and in the windbox

eaves them partially through a vent valve connected to the latter.
onversely, the simulated collapse is not instantaneous and takes
bout two seconds to complete, as Fig. 8 indicates. As the mixture
ollapses, the powder in the bottom layer is partly pushed down-

Fig. 9. Time evolution of the jetsam volume fraction spatial profiles during the
collapse of the binary mixture initially fluidized at a fluid velocity of 5.00 cm/s.
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�p(u) ≈�pe(u).
From the pressure drop standpoint, the computational predic-

tions might seem to agree reasonably well with the experimental
evidence. But can we claim to have correctly predicted u1(ω̄1)?
ig. 10. Stationary axial profiles of the average jetsam volume fractions on a fluid-f
m/s. Comparison between computational and experimental values.

ards from the center of the bed towards its periphery and then
pwards along the vessel walls. This mechanism induces mixing
nd alters the segregation profiles. Fig. 9, which refers to a fluid
elocity of 5.00 cm/s, shows visually this phenomenon, reporting
ow the jetsam volume fraction evolves in time and space as the
ed collapses.

In light of these considerations, to validate the numerical results
e decided to employ the concentration profiles computed while

he bed is fluidized. There is, nevertheless, also another reason. At
igh superficial fluid velocities, near the jetsam minimum fluidiza-
ion velocity, bubbling is vigorous, and thus the functions 〈ω1〉(xi, t)
scillate violently. The bed partially segregates, but then the bub-
les remix the mixture, evening out the jetsam axial concentration.

n these conditions, it is best to simulate the bed dynamics for a
ufficient long time and then average the functions 〈ω1〉(xi, t) over
any fluctuations. Freezing the bed, conversely, can lead to dif-

erent profiles 〈ω1〉(xi) depending on when we stop feeding the
uid.

Fig. 10 reports the numerical and experimental values of
ω1〉(xi), the latter obtained by Marzocchella et al., for fluid veloci-
ies of 5.00,6.00,7.00 and 8.00 cm/s. Qualitatively, the trends are
orrectly captured; the average percent error in the predictions is of
bout 11.0%, with the exception of the top layer where it increases
o about 40.0%, the segregation being here overpredicted. In both
xperiments and simulations, the bed does not separate sharply in
wo uniform layers, but 〈ω1〉(xi) changes gradually through the bed.

As we previously mentioned, Marzocchella et al. observed that

or fluid velocities less than 2.00 cm/s the powder forms a fixed
ed, whereas for velocities greater than 9.00 cm/s it turns into
steadily fluidized, well-mixed suspension. Between these two

hresholds, the suspension segregates and is partially defluidized,
he defluidized region being nearly at incipient fluidization. To
sis in the six bed layers for fluid velocities of 5.00 (A), 6.00 (B), 7.00 (C) and 8.00 (D)

test the simulations on this, we first computed the pressure drop
through the bed,�p(u), comparing it with the bed weight per unit
cross-sectional area, �pe(u). For u ≥ 2.00 cm/s, we found that the
two are equal, the fluid entirely supporting the particles; at lower
fluid velocities, conversely,�p(u)<�pe(u). As an example, Fig. 11
reports the pressure drop through the bed against time for fluid
velocities of 0.50,1.00 and 2.00 cm/s. For the first two velocities,
�p(u)<�pe(u), with the distributor plate supporting about 1.0%
and 0.5% of the bed weight, respectively; for the third, conversely,
Fig. 11. Bed pressure drop time profiles for fluid velocities of 0.50, 1.00 and
2.00 cm/s.
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Fig. 12. Time profiles of the average jetsam volume fractions on a fluid-free basis in the six bed layers for a fluid velocity of 1.00 cm/s.
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remaining instead the same foru = 2.00 cm/s. This behavior, where
the model predicts segregation even at low fluid velocities, when
segregation should not occur, arises in packed beds and was also
observed by [46]. It reveals a shortcoming of the interparticle drag
ig. 13. Stationary axial profiles of the average jetsam volume fractions on a fluid-
alues averaged between 10 and 20 s; (B) reports values averaged between 60 and

or u < 2.00 cm/s, we know that�p(u)<�pe(u) and that the gas
istributor plate supports part of the bed weight. What we still
o not know is whether the bed is fixed or partially fluidized. In
he first case, transient fluidization does not take place, the mix-
ure does not segregate and 〈ω1〉(xi) = ω̄1 for any xi; then it must
e u1(ω̄1) ≈ 2.00 cm/s. In the second case, the mixture segregates,
iving rise to an axial profile in 〈ω1〉(xi); consequently, it must be
1(ω̄1)< 2.00 cm/s. Hence, to understand if the simulations pre-
ict correctly u1(ω̄1), we need to examine the segregation profiles
or fluid velocities less than 2.00 cm/s. We performed this analysis,
nding that the system responds differently depending on the time

nterval considered. Fig. 12, which refers to a velocity of 1.00 cm/s,
eports the average jetsam concentrations 〈ω1〉(xi, t) in the six bed
ayers as time advances. As usual, within the first ten seconds the
ystem attains a pseudostationary state (Fig. 12A). But after 20 s,
new dynamics arises, and the functions 〈ω1〉(xi, t) start changing
gain towards new equilibrium values (Fig. 12B), with the mixture
uch more segregated.
Let us first consider the time interval between 0 s and 20

. Fig. 13A reports the jetsam concentrations 〈ω1〉(xi) averaged
etween 10 s and 20 s. For u < 2.00 cm/s, the bed is nearly fixed,
ith 〈ω1〉(xi) ≈ ω̄1 for any xi except in the top layer where the

etsam slightly segregates. For u = 2.00 cm/s,〈ω1〉(xi) changes in
oth top and bottom layers, remaining roughly constant in the

our middle layers. This analysis suggests that, at least for the fluid
elocities considered, the powder is never perfectly fixed, but some
ynamics is always present. Thus, strictly speaking, u1(ω̄1) must
e lower than 0.50 cm/s. However, if we neglect what happens in
he top bed layer, we might assume u1(ω̄1) ≈ 2.00 cm/s, because
asis in the six bed layers for fluid velocities of 0.50, 1.00 and 2.00 cm/s. (A) reports

for higher fluid velocities bed dynamics and segregation are more
pronounced.

After 20 s, a mixture that up to that moment had been fixed
begins to segregate. Fig. 13B reports the values of 〈ω1〉(xi, t) aver-
aged between 60 s and 150 s; foru < 2.00 cm/s the profiles change,
Fig. 14. Stationary axial profiles of the average jetsam volume fractions on a
fluid-free basis in the six bed layers for fluid velocities of 10.00, 14.00, 20.00 and
60.00 cm/s.
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ig. 15. Stationary values of the average jetsam volume fractions on a fluid-free
asis in the bottom bed layer for different fluid velocities.

orce closure, which does not diverge when the bed packs up; this
revents the slip velocities between the solid phases from van-

shing, allowing segregation to take place. The values 〈ω1〉(xi) not
hanging for u = 2.00 cm/s corroborate the idea that this velocity
s enough to fluidize the mixture and well approximates u1(ω̄1).

For fluid velocities u > 9.00 cm/s, Marzocchella et al. tell us
hat the mixture is steadily fluidized and fully mixed; they do
ot report any concentration profiles, so we have to assume that
ω1〉(xi) ≈ ω̄1 for any xi. This condition is numerically observed
nly for fluid velocities much greater than the jetsam minimum
uidization velocity. Fig. 14 reports the values of 〈ω1〉(xi), aver-
ged between 10 s and 150 s, for various velocities greater than
.00 cm/s; even at 60.00 cm/s, which is roughly three times the

etsam minimum fluidization velocity, 〈ω1〉(xi) /= ω̄1 in the top and
ottom bed layers (that is, for i = 1,6). Fig. 15 reports the aver-
ge jetsam concentration 〈ω1〉(x1) in the bottom bed layer (that is,
here jetsam segregation should be maximum) as a function of

he fluid velocity u. At 60.00 cm/s 〈ω1〉(x1) is still greater than ω̄1;
ence, even if qualitatively the trends are correct, the model does
ot predict well u2(ω̄1).

0. Conclusions

This work tests a basic multifluid model implemented within the
ommercial computational fluid dynamics code Fluent 6.3; it com-
rises some preliminary simulations of collapsing monodisperse
eds that focuses on the plastic stress role and on the selection
f the numerical time step, and an investigation of segregating
uidized binary mixtures. From these analyses, we concluded that:

1) Radial distribution functions that diverge in �max handle cor-
rectly the transition of fluidized suspensions from compressible
to incompressible flow regimes. When the solid tends to
overpack, gi and in turn the viscous solid pressure diverge,
pushing the particles towards less dense regions of the bed
and preventing the powder from reaching unphysically high
concentrations. The plastic stress, nevertheless, is important
because, by slowing down the packing dynamics, renders the
simulations more stable, allowing in some cases for larger
time steps. With divergent radial distribution functions, we can
neglect the plastic solid pressure, but we should account for the
plastic solid viscosity. By increasing the irreversible conversion

of mechanical energy into pseudointernal energy, this increases
the granular temperature and in turn the viscous solid pressure,
slowing down solid packing.

2) Segregating fluidized bidisperse suspensions are characterized
by two velocities, which we denoted by u1(ω̄1) and u2(ω̄1). The

[
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first is the minimum velocity at which the bed is no longer
fixed, the particles start moving, transient fluidization occurs
and the bed pressure drop begins oscillating, while the second
is the minimum velocity necessary to steadily fluidize and fully
mix the suspension. u1(ω̄1) and u2(ω̄1) depend on the powder
composition, but if the particles only differ in size, they usu-
ally lie between the minimum fluidization velocities of flotsam
and jetsam. The multifluid model employed, to which Fluent
refers as KTGF-based model, yields correct qualitative trends
and predicts reasonably well the stationary axial profiles of
jetsam concentration for fluid velocities between u1(ω̄1) and
u2(ω̄1).

(3) For velocities less then u1(ω̄1), the simulated bed is initially
fixed, its composition not changing, except in the top layer
where some jetsam segregates; also, the pressure drop through
the bed is less than the solid weight per unit cross-sectional
area. At higher velocities, the mixture is more mobile, segrega-
tion is more pronounced and the bed pressure drop balances
the solid weight. Therefore, the model seems to estimate well
u1(ω̄1). Nevertheless, for u < u1(ω̄1), if we let sufficient time
pass, the powder begins to segregate, even if the bed is packed,
and the system evolves towards a new steady state. This behav-
ior, also observed by [46], takes place in packed beds and reveals
a limitation of the interparticle drag force closure. When the
bed is fixed, this force should diverge, making the slip velocities
between the solid phases vanish, so that they cannot segregate.
This does not happen, and accordingly the powder segregates
even when it is fully packed.

(4) The model fails to predict u2(ω̄1), overestimating its value.
To prevent segregation, especially in the top and bottom bed
layers, the fluid velocity needs to exceed the jetsam mini-
mum fluidization velocity. This might be because the simulated
bubble dynamics is less vigorous than the one observed experi-
mentally, and therefore the turbulent motion that establishes at
high fluid velocities becomes essential for a powder to become
well mixed.

(5) Finally, we found that to determine the stationary jetsam con-
centration profile along the bed, we should avoid freezing the
bed. This is for two reasons. First, the bed takes time to set-
tle down, and as it does so the dynamics alters the original
concentration profiles. Second, because at high fluid velocities
bubbling makes the jetsam concentration fluctuate, freezing
the bed can lead to different profiles, which depend on the bed
configuration present when we stop feeding fluid.
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